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Unsharp Quantum Logics 
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The event-structure of a state-event system, containing unsharp elements, can 
be described either as a regular involutive bounded poset, or alternatively as 
an unsharp orthoalgebra (called also difference poset or effect algebra). Such 
structures give. rise to different forms of unsharp quantum logics. 

A basic aim of  the unsharp approaches to quantum theory (QT) (Busch 
et al., 1991; Cattaneo and Laudisa, 1994; Davies, 1983) is to provide a 
mathematization of  some ambiguous,  nebulous aspects which seem to be 
characteristic of  "concrete reality." All this enables us to fill a gap between 
an exact  mathematics and a fuzzy  experimental world. 

As is well known, according to the standard logicoalgebraic approaches, 
any physical theory T is associated to a collection of  s ta t e -even t  systems 
(S, %), where S contains the states that a physical system described by the 
theory may  assume and % contain the events that may  occur in the system. 

Let s, t . . . .  represent elements o f  S; while E, F , . . .  are elements of  %. 
The minimal abstract conditions that it seems reasonable to require for any 
quantum mechanical  (S, %) are the following: 

, 

2. 

VsVE: s(E) ~ [0, 1] 
(any state associates a generalized probability value to any event). 
Weak extensionality: 
VE,  F: Vs[s(E)  = s(F)]  ~ E = F 
Vs, t: VE[s (E)  = t(E)] ~ s = t 
(events that are probabilistically indiscernible are identified, and 
similarly for states). 
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3. % is closed under a weak complement operation ' (called also 
supplement) such that: 
VEVs: s(E') = 1 - s(E) 

4. % contains a certain event 1 such that: 
Vs: s(1) = 1 
Let 0 := 1' be the impossible event. 

This enables us to define a partial order relation C_ and an orthogonality 
relation L on % as follows. 

Definition 1. E C F r Vs[s(E) --< S(F)]. 

Definition 2. E • F r E C F' .  

As a consequence one obtains that the structure (%, C, ', 1, 0) is an 
involutive bounded regular poset. In other words: 

(a) C_ is a partial order with maximum 1 and minimum 0. 
(b) ' is an involution: (E = E"; E C F ~ F '  C_ E').  
(c) E • E and F • F ~ E L F (regularity). 

One can also require that a partial sum [] is defined on %: 

5. E • F r E []  F e % and Vs[s(E [] F) = s(E) + s(F)]. 

As a consequence one obtains that the structure (%, [], 1, 0) is an unsharp 
orthoalgebra. In other words, [ ]  is a partial binary operation satisfying the 
following conditions [where 3(E []  F)  means that []  is defined for E, F]: 

(a) Weak commutativity: 
3 ( E [ ] F ) ~ 3 ( F [ ] E ) a n d E [ ] F =  F [ ] E  

(b) Weak associativity: 
[3(F []  G) and 3(E []  (F []  G))] ~ [3(E []  F)  and 3((E []  F) 
[]  G)) and E []  (F []  G) = ( E [ ] F ) [ ] G ]  

(c) Strong excluded middle: 
For any E, there exists a unique F s.t. E []  F = 1 

(d) Weak consistency: 
3 ( E [ ] I ) ~ E =  0 

Unsharp orthoalgebras have been also called effect algebras (Foulis and 
Bennett, n.d.) or weak orthoalgebras (Giuntini and Greuling, 1989). One can 
prove that the concept of unsharp orthoalgebra is equivalent to the notion of 
difference poset (or D-poset), investigated by K6pka and Chovanec (1994), 
Dvure~enskij (1994), and Dvure6enskij and Pulmannov~i (1994). 

A sharp orthoalgebra (or simply an orthoalgebra) satisfies besides 
conditions (a)-(c), the strong noncontradiction principle: 
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(d') 3 ( E [ ] E )  ~ E  = 0. 

As is well known, canonical Hilbert-space exemplifications of state- 
event systems (S, %) can be obtained by taking as S the set of the density 
operators in the Hilbert space ~ (associated to the physical system under 
investigation), whereas % can be identified either with the set @(~) of the 
projections of ~ or, alternatively, with the set %(~) of the effects of ~ .  

The set of all effects %(~) can be naturally structured as an unsharp 
orthoalgebra (%(~), [], 1, 0), where: 

�9 3 ( E [ ] F )  c : ~ E +  F E %(~). 
�9 3 ( E m F ) ~ E [ ] F = E + F .  
�9 0 = O (the null projection). 
�9 1 = i (the identity projection). 

This structure is not a sharp orthoalgebra, since the strong contradiction 
principle is violated. For instance: the semitransparent operator-~l is an effect 
(to which any state assigns probability 1/2); further, 3(�89 ] []  �89 i) and-~ 1 v~ O. 

In contrast to %(~), ~ ' (~)  gives rise to a sharp orthoalgebra. Hence, 
effects may be generally regarded as a kind of unsharp generalization of 
projections. 

How can we define, in an abstract way, the distinction between sharp 
and unsharp events? Let us first notice that from the semantic point of view, 
events are naturally thought of as intensions. What is the extension of an 
event E? Different ideas of extension can be proposed. 

Definition 3 (The r-extension of E [ExK(E)]). Let r ~ [0, 1]. Then 

ExF(E) = {s ~ SIs(E) = r} 

In other words, Extr(E) is the set of states that assign probability r to E. 
Let us call ExtI(E) the positive extension (or the positive certainty 

domain) of E. Similarly, Ext~ will represent the negative extension (or 
negative certainty domain) of E. 

Definition 4. The simple extension (or simpIe proposition) o r e  is Extl( E). 
In other words, the simple extension of E is the set of all states in S which 
certainly verify E. 

This fairly corresponds to the notion of proposition that is generally 
adopted in the usual possible-world semantics, where the extensional meaning 
of a sentence is identified with the set of possible worlds which verify our 
sentence. Simple extensions (or propositions) correspond to a somewhat 
rough idea of extension that completely neglects what happens for all probabil- 
ity values different from the certain value. A finer definition can be obtained 
as follows: 
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Definition 5. The generalized (or infinite) extension is a function Ext= 
s.t. Ext,: % ~ ~(S)  l~ and 

Ext=(E)(r) = ExY (E) 

for any E E % and r ~ [0, 1]. Here ~(S)  is the power set of S. 

Needless to say, also simple extensions may be trivially described as 
functions EXtl s.t. Exh: % ~ ~(S)  I~t. It might be useful to consider also an 
intermediate notion between simple and infinite extensions. [This has been 
applied in the semantic characterization for a form of Brouwer-Zadeh logic 
(Dalla Chiara et al., 1993).] 

Definition 6. The yes-no  extension is a function Ext2 s.t. Ext2: o~ ___> 
~(S) {O'l} and 

Extz(E)(1) = Ext'(E) 

Extz( E)( O ) = Ext~ E) 

In other words, the yes -no  extension of E associates to 1 the positive 
extension of E, and to 0 the negative one. As a consequence, we obtain that 
simple extensions [Ext'(E)] are represented by sets of states, yes -no  exten- 
sions are represented by pairs of sets of states [(Extl(E), Ext~ and 
generalized extensions correspond to infinite classes of sets of states 
( { E x t r ( E ) } _ r ~ O , , O .  _ 

Let %~, %2, %~ be, respectiv__ely, the class of all generalized, yes-no,  
simple extensions of %. And let %i (where i E { 1, 2, ~}) represent any of 
our three extension-sets. 

Generally, events are not determined by their simple extensions: in other 
words, different events may have one and the same simple extension. In the 
same way, different concepts (say "equiangle triangle," "equilateral triangle") 
may have the same extension in the usual semantics. At the same time, events 
are always determined by their generalized extensions; for, we have assumed 
a weak extensionality principle. In some very peculiar situations, it may 
happen that events are determined by their simple extensions. In other words: 

VE ~ %: E = F r Extl(E) = Ext1(F). 

Two important examples of this kind are the following: 

1. Classical probability theory. Take % as any measurable or-field of 
sets. Take S as the class of all probability measures on %. 

2. Standard quantum mechanics. Take % as the class ~ ( ~ )  of all 
orthogonal projections on the Hilbert space ~ .  Take S as the set of 
all density matrices in ~ .  
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In such cases, Ext I induces a structure on the extension set %1 ((% ~, _ ,  
', 1, 0)) which is trivially isomorphic to the original event-structures. Of 
course, the partial order relation collapses, here, into the set-theoretic inclu- 
sion; ' becomes a set-theoretic operation, generally different from the comple- 
mentation. Should %1 be closed under the set-theoretic intersections, one 
immediately obtains a lattice structure for %1, which will be automatically 
transferred to % by isomorphism. This is the well-known situation which 
arises in standard QM, where quantum propositions are indifferently identified 
either with projections (events) or with closed subspaces (corresponding to 
simple propositions). Just this correspondence has been described by Foulis 
and Randall as one of the "metaphysical disasters" of orthodox Hilbert space 
quantum theory. The extensional collapse breaks down if we decide to enlarge 
the set of our quantum events and to identify % with %(~) (the set of all 
effects of 7Q. Effects are determined neither by their simple nor by their 
yes -no  extensions. 

Let us now propose three possible abstract definitions for the notion 
of sharpness. 

Let (%, S) be a state-event system. 

Definition 7. An event E is weakly sharp iff E satisfies the noncontradic- 
tion principle. In other words, E n E' = 0 if E N E' (the infbetween E and 
E') exists in %. 

Definition 8. E is semistrongly sharp iff either E = 0 or for at least one 
state s: s(E) = 1. 

In other words, if not impossible, our event is certainly satisfied by at 
least one state. 

Definition 9. E is strongly sharp iff the negative extension of E is the 
maximal one. 

In other words, 

s E Ext~ r s ,1, Extl(E) 

where s _i_ X means Vt E X 3F  E %Is(F) = 1 and t(F) = 0]. 
One can easily check that 

strong sharpness ~ semistrong sharpness ~ weak sharpness 

but not the other way around. 
Proper effects in QM may violate all three conditions. As an example, 

let us think of the semitransparent effect �89 
Both the event and the proposition structures give rise to particular 

models of quantum logic (QL). Generally, the intensional and the correspond- 
ing extensional structures are not associated to one and the same logic (think 
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of the case of the effect structures and the Brouwer-Zadeh logics!). As is 
well known, the standard projection structure is a model for orthodox QL 
(Birkhoff-von Neumann), which is a sharp logic, where no violation of the 
noncontradiction principle is admitted. At the same time, orthodox QL is 
also a total logic, since its basic logical constants behave as total operations 
(universally defined). Event structures which may contain also unsharp ele- 
ments (like the effect structures in Hilbert space QT) have suggested different 
forms of paraconsistent and fuzzy QL where the noncontradiction principle 
admits violations. It may also happen that the basic logical constants are not 
universally defined. For instance, the conj unction of two meaningful sentences 
does not generally have a well-determined meaning. This gives rise to a 
partial unsharp quantum logic (Dalla Chiara and Giuntini, 1994, n.d.). The 
study of the correlations among these different unsharp logics is an object 
of research that is still in progress (Dalla Chiara and Giuntini, n.d.; Giun- 
tini, n.d.). 
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